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Mutations in the Transmembrane Natriuretic Peptide Receptor NPR-B
Impair Skeletal Growth and Cause Acromesomelic Dysplasia, Type
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The homodimeric transmembrane receptor natriuretic peptide receptor B (NPR-B [also known as guanylate cyclase
B, GC-B, and GUC2B]; gene name NPR2) produces cytoplasmic cyclic GMP from GTP on binding its extracellular
ligand, C-type natriuretic peptide (CNP). CNP has previously been implicated in the regulation of skeletal growth
in transgenic and knockout mice. The autosomal recessive skeletal dysplasia known as “acromesomelic dysplasia,
type Maroteaux” (AMDM) maps to an interval that contains NPR2. We sequenced DNA from 21 families affected
by AMDM and found 4 nonsense mutations, 4 frameshift mutations, 2 splice-site mutations, and 11 missense
mutations. Molecular modeling was used to examine the putative protein change brought about by each missense
mutation. Three missense mutations were tested in a functional assay and were found to have markedly deficient
guanylyl cyclase activity. We also found that obligate carriers of NPR2 mutations have heights that are below the
mean for matched controls. We conclude that, although NPR-B is expressed in a number of tissues, its major role
is in the regulation of skeletal growth.

Introduction

Endochondral bone growth occurs at growth plates in
the axial and appendicular skeleton. Chondrocytes pro-
liferate, differentiate, increase in size, synthesize, calcify
matrix, and become apoptotic, ultimately leading to the
recruitment of osteoblasts that replace the calcified car-
tilage matrix with bone. Endochondral growth is reg-
ulated by endocrine, paracrine, and autocrine factors
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(fig. 1), many of which have been identified through the
study of individuals who have abnormal growth patterns
(van der Eerden et al. 2003; Zelzer and Olsen 2003).

Acromesomelic dysplasia, type Maroteaux (AMDM
[MIM 602875]) (Maroteaux et al. 1971), is an auto-
somal recessive skeletal dysplasia with a prevalence of
∼1/1,000,000 (fig. 2). Birth lengths and weights are nor-
mal, although mild shortening of long bones may be
detected in some affected infants by clinical and radio-
graphic examination (Langer and Garrett 1980). How-
ever, radiographs of newborns do not reveal misshap-
en bones or abnormal growth plates. In patients with
AMDM, skeletal growth falls off sharply after birth, so
that a skeletal disorder is strongly suspected in most
affected individuals by 1 year of age. By 2 years of age,
radiographic skeletal changes are diagnostic for AMDM
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Figure 1 Schematic depiction of an endochondral growth plate, with resting, proliferative, prehypertrophic, and hypertrophic zones noted.
Ligands or ligand families known to regulate endochondral growth (e.g., IGF, FGF, and BMP) are shown at left. Note that CNP is expressed
by proliferative and prehypertrophic chondrocytes. Sites of expression of the two CNP receptors are shown at right. NPR-B is expressed in
proliferative and prehypertrophic chondrocytes, whereas NPR-C is expressed in prehypertrophic and hypertrophic chondrocytes. Systemic growth
factors are noted above. Although some interactions between secreted growth factors are known (see, e.g., Minina et al. 2002), the interplay
between most endocrine- and paracrine-signaling systems is still not delineated.

and include abnormal growth plates and short, mis-
shapen bones in the extremities (fig. 2) and spine.
Whereas newborns with AMDM have lengths within 2
SDs of the mean, adults with AMDM have heights that
are 15 SDs below the mean. The skeletal system appears
to be the only organ system consistently affected among
individuals with AMDM. It is interesting that carrier
parents of children with AMDM have been noted to be
shorter than average (Borrelli et al. 1983).

We used a positional-candidate approach to identify
the cause of AMDM. Here we report that AMDM re-
sults from loss-of-function mutations in the natriuretic
peptide receptor B (NPR-B). This result indicates that,
despite a broad pattern of expression during develop-
ment, a principal function of NPR-B is the regulation
of skeletal growth.

Subjects and Methods

Patient Recruitment, Statistical Analysis of Height,
and Mutation Detection

This study was approved by the institutional review
board at University Hospitals of Cleveland. Informed

consent was obtained from all participants who gave
blood from which DNA was extracted. The clinical di-
agnosis of AMDM was based on radiographic criteria
(Langer and Garrett 1980). Participating families came
from several different geographic and ethnic back-
grounds. Only families with available population-con-
trol data for height (matched by sex, age group, and
geography and/or ethnicity) were used to determine
whether there was a heterozygous effect. The difference
in height compared with population controls that were
matched by sex, age group, and geography and/or eth-
nicity (James and Schofield 1990) was determined for
30 adult carriers of AMDM. The mean difference in
height between carriers and controls was tested for sta-
tistical significance by use of the t distribution with 29
df. Human NPR2 genomic DNA sequence was retrieved
from GenBank, and PCR primers were designed to am-
plify coding exons and flanking intronic sequence from
patient/parent genomic DNA. PCR amplimers were se-
quenced by use of BigDye1.1 and an ABI 3100 capillary
sequencer. Mutations were confirmed in all available
parents. Six missense mutations that alter restriction en-
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Figure 2 Clinical and radiographic features of AMDM. A, Side photograph of an adult male with AMDM, whose hand photograph is
in panel B. Note the short stature, the shortening of the extremities, and the bowing of the forearm. C, Hand radiograph of a child with
AMDM, whose hand photograph is in panel D. Note the shortening and widening of metacarpals and phalanges. E, Hand radiograph of an
adult carrier of AMDM, whose height is 145 cm (4 ft, 9 in) and whose hand photograph is in panel F. Note the normal shape and proportion
of the skeletal elements.

zyme sites were evaluated in a sample of at least 50
control individuals from the general population.

Modeling Missense Mutations

The domains of NPR-B were modeled individually
(fig. 3) as follows. The extracellular domain (ECD) dimer
was modeled on the NPR-A crystal structure (Protein
Data Bank [PDB] accession number 1DP4) with the
NPR-C crystal structure used as an additional guide
(PDB accession number 1JDP). The kinase-homology
domain (KHD) of NPR-B was modeled on the lympho-
cyte-specific kinase Lck structure (PDB accession num-
ber 1QPC). The guanylyl cyclase (GC) domain dimer
was based on the adenylyl cyclase structure (PDB ac-
cession number 1CUL). The structure-based sequence
alignment and subsequent modeling was done in an it-
erative fashion with SWISS-MODELER (Guex and
Peitsch 1997) and the program O (Jones et al. 1991),
and the model quality was monitored by use of the struc-
ture-validation program ERRAT (Colovos and Yeates
1993). The molecular figures were generated by use of

MOLSCRIPT (Kraulis 1991) and RASTER 3D (Merritt
and Bacon 1997). The composite figure depicting the
entire NPR-B receptor is purely for illustrative purposes;
the precise orientation of the individual domains with
respect to each other is not known.

Assaying Wild-Type and Mutant NPR-B Activity

Missense mutations in NPR-B were generated by site-
directed mutagenesis using the wild-type rat NPR-B ex-
pression construct pRK-NPR-B. Activity in HEK 293
cells was measured as described elsewhere (Abbey and
Potter 2003). In brief, cells were seeded to 40%–45%
confluency in 10-cm dishes in Dulbecco’s modified Eagle
medium (DMEM) with 10% fetal bovine serum (FBS).
The cells were transfected 2 d later with 4 mg of ex-
pression construct with Lipofectamine (Invitrogen) in
serum-free DMEM. After transfection, cells were sup-
plemented with 15% FBS and incubated overnight.
Transfection efficiency was 40%–50%, as determined
by cotransfecting cells with a green fluorescent protein
reporter plasmid. Transfected cells were starved for 12
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Figure 3 Schematic diagram of the dimeric NPR-B receptor, highlighting sites containing putative disease-causing missense mutations and
a truncation mutation that would not be predicted to cause nonsense-mediated mRNA decay. Also depicted are the ECD, transmembrane helices
(TM), the kinase homology domain (KHD), the coiled-coil (CC) region, and the guanylyl cyclase (GC) domain. Mutations are P32T (1), W115G
(2), D176E (3), T297M (4), Y338C (5), A409T (6), G413E (7), Y708C (8), R776W (9), R957C (10), G959A (11), and R1020fsX1025 (12).
A, Close-up view of four mutation sites (4–7) in the ECD. B, Close-up view of the W115G and D176E mutation sites. C, Close-up view of
the Y708C and R776W mutation sites in the KHD. D, Close-up view of the modeled NPR-B GC domain dimer showing R957C, G959A, and
R1020fsX1025. The red ribbon indicates the portion of NPR-B that is missing in R1020fsX1025. Note that, for clarity, only one of the nucleotide
substrate analogs, derived from the template 1CUL kinase domain structure, is shown (dark blue), including the two magnesium ions (black).

h prior to C-type natriuretic peptide (CNP) exposure
(48–72 h after transfection). Cells were then exposed to
1 mM CNP (Bachem) for 3 min. Signaling was termi-
nated by aspirating the CNP-containing media and add-
ing ice-cold 80% ethanol to the cells. This ethanol ex-
tract was centrifuged, and the supernatant was collected
and vacuum evaporated. The amount of cytoplasmic cy-
clic GMP (cGMP) in the evaporated samples was mea-
sured by use of a cGMP assay kit (Cayman Chemical).

Results

By use of the positional-candidate approach, we iden-
tified NPR2, which encodes NPR-B, as the gene re-
sponsible for causing AMDM. Eighteen families affected
by AMDM were used to map the candidate interval to
a 4.7-Mb region of human chromosome 9 (Kant et al.
1998; authors’ unpublished data). NPR2 is contained

within this interval. NPR-B expression has been reported
in growth-plate chondrocytes (Yamashita et al. 2000),
in which it is the major receptor for the secreted ligand,
CNP. Furthermore, mice with homozygous knockout
mutations in CNP are dwarfed (Chusho et al. 2001).
We therefore sequenced NPR2 and found putative dis-
ease-causing mutations in all affected individuals in our
study (table 1). Eight mutations are nonsense or frame-
shift mutations, seven of which are predicted to cause
nonsense-mediated mRNA decay. Two mutations are
predicted to affect mRNA splicing. Eleven mutations are
missense mutations.

Alignments were made of NPR-B from human, rat,
mouse, cow, dogfish, eel, and medaka fish to look for
amino acid conservation at missense mutation sites.
There was complete conservation of P32, W115, D176,
G413, Y708, R776, R957, and G959. In mammals, there
was also conservation of T297, Y338, and A409. We did
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not find any of the six missense mutations testable by
restriction-enzyme analysis (W115G, D176E, T297M,
A409T, G413E, and R776W) in healthy controls.

We modeled all identified NPR-B missense mutations
by use of homology models of both the extra- and in-
tracellular domains (fig. 3). Modeling suggested that
each missense mutation would affect receptor function.
For example, in the receptor’s ECD, P32T is predicted
to disrupt hydrophobic interactions with the side chains
of L31, Y38, W40, and A41, as well as with the disulfide
bond of C75-C101; W115G is predicted to alter the
head-to-head dimer interface (van den Akker et al.
2000; He et al. 2001); and D176E is predicted to disrupt
the ligand-binding site. The mutations T297M and
Y338C replace small and aromatic side chains with
large and polar side chains, respectively, in the protein’s
core, and the mutations A409T and G413E affect a b-
strand thought to be important for transducing signal
across the membrane. Intracellular mutations Y708C
and R776W, as well as R957C and G959A, are pre-
dicted to affect protein folding, since they alter highly
interactive residues within the kinase homology and
guanylyl cyclase domains, respectively. As a result, all
identified NPR-B mutations are expected to have de-
creased activity caused by either local (or global) re-
ceptor destabilization or by disruption of signal trans-
duction and/or cGMP production. We tested this for
three missense muteins (W115G, T297M, and G413E)
and one frameshift mutein (R1020FS) by transfecting
HEK 293 cells, which do not normally express NPR-B,
and measuring cGMP production after stimulation with
CNP. The four muteins produced equivalent amounts
of protein by western blot, compared with the wild type
(data not shown), but had relative guanylyl cyclase ac-
tivities (�SD), compared with the wild type, of 12.4%
(�12.2%), 17.4% (�14.8%), 3.1% (�1.6%), and
3.4% (�3.0%), respectively.

To determine if there was an effect on skeletal growth
in obligate carriers of NPR2 mutations, we compared
the adult heights of the parents and carrier siblings of
patients with AMDM with those of population controls
matched by age group, sex, and geography and/or eth-
nicity. It was not possible to compare carrier heights to
those of noncarrier siblings, since there were too few in
the participant cohort. We found that the average height
among 30 adult carriers of AMDM was 5.7 cm shorter
than that of population-matched controls ( )P ! .001
(see table 1).

Discussion

NPR-B is a transmembrane receptor that is expressed in
a broad array of tissues, including brain, adrenal gland,
and uterus (Tamura and Garbers 2003). However, our

results indicate that, in humans, NPR-B is primarily in-
volved in the regulation of skeletal growth. Individuals
with AMDM do not have neurologic impairment, ab-
normal blood pressure, or any other consistent abnor-
mality of an organ system outside the skeleton.

The precise role for NPR-B in endochondral growth
is not known, since growth-plate histology is not avail-
able from patients with AMDM and a mouse model for
NPR-B deficiency has not been described. As a conse-
quence, at present the receptor’s role can only be inferred
from studies of its ligand, CNP, or from downstream
effectors such as cGMP-dependent protein kinase II
(cGKII). Mice lacking CNP are dwarfed (Chusho et al.
2001), and mice overexpressing CNP have longer bones
(Chusho et al. 2001; Yasoda et al. 2004). These results
and studies of exogenous administration of CNP to in
vitro whole-organ cultures of mouse and rat tibias in-
dicate that CNP can stimulate chondrocyte proliferation
and increase the size of individual hypertrophic chon-
drocytes (Yasoda et al. 1998; Mericq et al. 2000). A
second role of CNP during endochondral growth in-
volves the regulation of matrix synthesis, since increased
matrix production, but not increased cell proliferation,
in CNP transgenic mice was shown to mitigate the effect
of an Fgfr3 mutation that causes achondroplasia in hu-
mans (Yasoda et al. 2004). Since CNP is able to increase
chondrocyte proliferation, matrix synthesis, and cell hy-
pertrophy in the growth plate, it is likely that each of
these effects is mediated by signaling via NPR-B.

Activation of NPR-B by CNP leads to the production
of cGMP, which activates cGMP-dependent protein ki-
nases (cGKs) (Lincoln and Cornwell 1993). In this re-
gard, it is relevant that dwarfism has been observed in
mice in which the cGKII gene (PRKG2 in humans) has
been disrupted (Pfeifer et al. 1996). cGKII knockout
mice have persistent nests of incompletely differentiated
chondrocytes within the terminally differentiated hy-
pertrophic chondrocyte zone (Pfeifer et al. 1996). This
was not observed in CNP knockout mice, implying that
NPR-B affects endochondral growth by both cGKII and
non-cGKII pathways (Miyazawa et al. 2002).

NPR-B has a paralogous family member, NPR-A,
which has a low affinity for CNP and a high affinity
for the natriuretic peptides ANP and BNP. Mice lacking
NPR-A, ANP, and BNP have abnormalities of blood
pressure, blood volume, and myocyte remodeling, but
no skeletal defects (John et al. 1995; Oliver et al. 1997;
Tamura et al. 2000). Skeletal overgrowth has been re-
ported in mice lacking a third natriuretic peptide re-
ceptor, NPR-C, which is expressed in hypertrophic
chondrocytes and is postulated to regulate terminal
chondrocyte differentiation (Matsukawa et al. 1999).
This receptor is able to bind all three natriuretic peptides
with similar affinity, but it lacks guanylyl cyclase activ-
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ity. As a consequence, NPR-C could effect terminal dif-
ferentiation by signaling via non-cGMP–dependent
pathways or by reducing NPR-B activity through com-
petition for the ligand, CNP (Levin 1993; Pagano and
Anand-Srivastava 2001). Skeletal overgrowth has also
been observed in transgenic mice that have elevated se-
rum levels of BNP (Suda et al. 1998). BNP in the sys-
temic circulation is likely to reach growth-plate chon-
drocytes and either directly agonize NPR-B signaling or
indirectly increase local CNP levels by saturating the
competing receptor NPR-C. The ability of increased lev-
els of BNP in serum to affect skeletal growth suggests
that exogenous administration of more-selective ago-
nists (e.g., CNP) may increase skeletal growth in indi-
viduals with functioning NPR-B receptors, analogous
to the use of exogenously administered recombinant hu-
man growth hormone and insulin-like growth factor 1
(Laron 1999; Sandberg and MacGillivray 2000).

Two other observations in individuals and families
affected by AMDM warrant comment. First, NPR-B
functional haploinsufficiency, as can occur in parents of
patients with AMDM, appears to cause shorter stature.
A similar haploinsufficiency effect on blood pressure has
been observed for the NPR-A gene in mice (Oliver et
al. 1998). Given the rarity of AMDM mutations in the
general population (estimated carrier frequency 1/500),
these loss-of-function alleles will not contribute strongly
to the normal population variation in height; however,
other NPR2 variants could contribute to this trait, since
a height QTL has been placed near NPR2 on human
chromosome 9 (Xu et al. 2002). Second, among indi-
viduals with AMDM, postnatal skeletal growth is more
strongly affected than prenatal growth. A similar effect
has been observed in individuals with congenital growth
hormone deficiency or mutations in the growth hor-
mone receptor (Pena-Almazan et al. 2001), consistent
with the temporally regulated expression of the growth
hormone receptor within the growth plate during pre-
natal and postnatal life (Barnard et al. 1988). Although
we do not know yet what accounts for the different
effects of NPR-B deficiency on prenatal and postnatal
growth, it is intriguing to speculate that it is another
example of a temporally regulated paracrine pathway.
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